
Caching / Content Delivery Networks
Fabian Waller, Advisor: Marcel Maltry

I. INTRODUCTION

In modern web applications, ensuring predictable end-to-
end system quality and performance is crucial. Even minor
performance issues can have a significant impact on business,
resulting in lost revenue and damage to brand reputation.

However, the Internet’s existing architecture was not de-
signed to meet the demanding levels of performance, reliabil-
ity, and scalability that these applications require. The Internet
is made up of thousands of distinct networks, which means
that centrally-hosted content must traverse multiple networks
to reach end users. As a result, capacity issues arise at peering
points where networks exchange traffic. Wide-area Internet
communication is vulnerable to various bottlenecks, such as
latency, packet loss, network outages, inefficient protocols, and
inter-network friction. These limitations within the Internet
architecture hinder its ability to deliver static and dynamic
web content efficiently and with guaranteed end-to-end system
quality. [1]

In addition to these challenges, basic routing protocols such
as the Transmission Control Protocol (TCP) were not designed
for optimal performance [2]. Route calculations for internet
traffic rely primarily on an Autonomous System (AS) [3]. The
AS lacks knowledge about topologies, latencies, and real-time
congestion in subnetworks.

Content Delivery Networks (CDNs) attempt to mitigate
these problems, which are beyond the direct control of a web
developer. CDNs emerged in the late 1990s as critical tools for
overcoming significant technical obstacles, bridging the gap
between the limited capabilities of the Internet infrastructure
and the performance requirements of web applications. At
the time, bandwidth prices were high, but infrastructure costs
were less significant. Most CDN providers therefore aimed to
minimise bandwidth requirements by distributing servers with
content caches close to end users within the existing Internet
architecture, while minimising server loads, client response
times and server availability. Since then, the Internet has
evolved significantly, with bandwidth prices falling, customer
demand for rich media content increasing and server costs
rising. As more people consume digital content, the need for
enhanced security, additional cloud functionality and support
for market metrics and analytics has grown. [4]

A highly distributed network emerges as the most effective
architectural solution, especially for interactive and bandwidth-
intensive content. CDNs enable companies to achieve very
acceptable levels of performance, reliability and cost-effective
scalability, but also provide the ability to iterate and ship
faster - with much less worry about infrastructure provisioning,

capacity planning, architecture for scalability and breaking
production code. [1]

In the following, this report will provide a broad overview of
CDNs by explaining how they work as a virtual network over
the existing Internet infrastructure, what system components
are required to work together as a web content cache, and
how this differs from other caching methods. Two different
cache distribution methods are presented. It also explains how
entire applications can be made highly performant by moving
application logic closer to the user, and the additional benefits
of a recovery-oriented design philosophy.

II. OVERVIEW

An origin server is the server that hosts the original version
of the content. This can be a web server, an application server,
a dedicated storage server or a database server, usually hosted
in a larger data centre. Edge servers hold additional copies of
this content that are distributed in close proximity to end users.
End users only communicate with the edge servers, which are
responsible for retrieving content from the origin server if it is
not in its cache, significantly reducing the load and bandwidth
requirements on the origin server cluster.

As a result, this optimisation has a positive impact on the
perceived performance of Web services to users, as it aims
to minimise bottlenecks in the middle mile and ensure fast
retrieval of cached content when available.

A. Virtual Networks

A CDN, defined as a geographically distributed network
of Points of Presence (PoPs) [5] where edge servers are
hosted in data centres [6], operates seamlessly over the ex-
isting Internet infrastructure as an adaptable virtual network
without requiring client software or changes to the underlying
networks. [1] CDN nodes are typically deployed on a widely
distributed hardware infrastructure comprising tens of thou-
sands of servers around the world, spanning various major
data routes [7]. The widespread presence of PoPs around the
world ensures that users can access a high-speed server in their
proximity, ideally within their local ISP’s network, as shown
in Fig. 1

B. System Components of a Delivery Network

The CDN components shown in Fig. 2 are designed to work
together to deliver content to end users quickly and reliably.

1) Request Handling: When a user initiates a URL request,
the mapping system translates the domain name into
the IP address of an edge server. This system uses
data to intelligently select an edge server that is in

1



Fig. 1. The edge servers are located in global distributed Points of Presence
(PoPs), which are interconnected by an optimised transport system. Either
each PoP has its own IP address (DNS-based routing) or all PoPs share the
same IP address (Anycast). In either case, users are somehow mapped to the
optimal (closest) edge server, which then retrieves the content from the origin
server if it is not already in its cache.

optimal proximity to the end user. Content requests
are typically algorithmically routed to nodes optimised
based on specific objectives such as geographic location,
availability (in terms of both current and historical server
performance and network congestion), performance, cost
considerations, or the dynamic likelihood that the re-
quested content is already in cache. [8] [9]

2) Subsequently, the end user’s browser initiates an HTTP
request to the obtained edge server IP address to retrieve
the content. The edge server then checks its cache for
the requested content. If the content is cached, the edge
server delivers it to the end user.

3) The primary role of the transport system is to move
data efficiently and reliably from the origin to the edge
servers. In cases where the content is not already cached,
the edge server efficiently retrieves it from the origin
server via the transport system before delivering it to
the end user. The transport system is responsible for
ensuring a reliable and high performance connection
for data and content over the long distance Internet.
Communication between CDN servers can be optimised
through various techniques such as path optimisation
and protocol enhancements. The transport system also
accelerates non-cacheable customer content and appli-
cations by retrieving content or performing freshness
checks from the origin server.

Current status information, control messages and configura-
tion updates are usually available to CDN customers through a
communication and control system. Often a data collection
and analysis system systematically collects and processes
data, including server and client logs, user data, and network
and server information. The management portal acts as a
configuration management platform and provides analytics
based on the collected data, such as audience demographic
reports and insights into user interactions with the application,
traffic metrics, monitoring, alerting, reporting and billing. [1]

Fig. 2. When a user requests content, the mapping system translates the
domain name into the IP address of an optimal edge server. The edge server
then checks its cache for the requested content. If the content is cached, the
edge server delivers it to the end user. If necessary, an edge server can request
content from an origin server (backend web server, application server). The
transport system is responsible for ensuring a reliable and high performance
connection for data and content over the long distance Internet.

C. Difference from other caching problems

While all caching mechanisms share the overarching goal
of reducing latency and improving access times, they are
specifically designed for distinct contexts. CDNs operate at
the application layer within the technology stack, focusing on
delivering content to end users over the Internet. In contrast,
database buffers, file system caches and L2 caches operate
at the database, operating system and hardware levels respec-
tively. And unlike a local browser cache, which is exclusive
to a single user, a CDN is a shared cache accessible to all
users of a service. [10] These different caching mechanisms
are complementary. For example, a web application benefits
from the shared use of a database buffer to speed up dynamic
data retrieval, a CDN to deliver web content quickly, and each
user’s local browser cache to store static content that does not
change frequently.

D. Cache Distribution

Web caches store content on servers that have the greatest
demand for the requested content. They are filled based on

2



user requests (pull caching) or based on preloaded content
distributed by content servers (push caching).

The tiered distribution model for less frequently accessed
content, known as ”pull”, involves the use of a set of well-
provisioned ”parent” clusters (they have a high degree of
connectivity to edge clusters). If an edge cluster does not
have the requested content in its cache, it will retrieve the
content from its parent cluster instead of the origin server.
This approach reduces the load on the origin server, which
only needs to maintain connections with a few dozen parent
clusters rather than all edge servers. Both origin and parent
clusters can use the performance-optimised transport system.

In contrast, the push model involves an overlay network,
which is particularly useful for live video streaming or edge
configuration. The captured and encoded stream is sent to an
entry point cluster, and to avoid single points of failure, copies
of the stream are sent to additional entry points with automatic
failover mechanisms. The live stream transport system then
propagates the stream packets from the entry point to a subset
of edge servers. Reflectors, an intermediate layer of servers,
enable scalable replication of streams to multiple edge clusters,
providing alternate paths for improved end-to-end quality
through path optimisation. [1]

The distributed nature of the CDN network is key to the ef-
fectiveness of the overlay network, ensuring highly optimised
long-haul tunnels with endpoints located close to the origin
server and end user. This results in optimised communication
from origin to end user, making even origin server downloads
through the high performance overlay almost as efficient as
cached files.

III. HIGH PERFORMANCE APPLICATION DELIVERY
NETWORKS

In addition to static files, entire web applications and other
non-cacheable dynamic content benefit from using a CDN in
two primary ways.

A. High Performance Overlay Network

First, a CDN takes advantage of the speed of the Internet
for long-distance communications by using the CDN transport
system as a high-performance overlay network. It traverses the
Internet and reaches a CDN machine close to the customer’s
origin server, usually within the same network or even the
same data centre, so that latencies are low.

B. Edge computing

Second, developers can push application logic from the
origin server to the edge of the Internet. CDN customers can
deploy functions to the edge, where they can be executed
based on HTTP requests or custom events. This allows code
to run in local data centres, closer to end users, and provides a
relatively simple multi-region setup. The ultimate performance
boost, reliability and scalability is only achieved when the
application itself is distributed to the edge. Deploying and
running a request driven application or component on edge
servers brings cloud computing to a level where resources

are not only allocated on demand, but also close to the end
user. But it also brings new challenges, including more com-
plex session management, multi-machine replication, security
sandboxing, fault management, distributed load balancing, and
resource monitoring and management, as well as advanced
requirements for testing and deployment tools. [1]

Not all types of applications can run entirely on the
edge, especially those that rely heavily on large transactional
databases. However, several applications or parts thereof can
benefit, including content aggregation/transformation, static
databases, data collection and data validation. Even with real-
time database transactions, running front-end components at
the edge offers performance benefits by streamlining com-
munications with the origin server and reducing load. For
example, the origin server can generate a small dynamic page
that references cachable fragments, allowing the final HTML
page to be assembled and served at the edge. [1]

Fig. 3. Edge functions can run at different logical locations, namely viewer
request (before caching), origin request (after caching), origin response
(before caching origin response) and viewer response (before sending the
origin/cached response).

As visualised in Fig. 3, application logic can also run
in different logical places for different purposes, such as
content paywalls for a news site, permanent redirects, image
formatting and setting user cookies for analytics. Why these
functions are best executed at these locations is explained
below.

1) If caching for a news website is done on a per-user
basis (based on an authentication token), it may result
in rarely returning a cached result, as users may only
visit the site once a day. Instead, it is recommended to
remove the authentication token, extract the subscription
level (premium or free) and set a header containing this
information before caching the request. This header can
then be cached, resulting in a cached response returned
to all users with the same subscription level.

2) For permanent redirects, such as during a migration, a
URL can be matched and redirected to a new URL.
Configuring this after caching ensures that the traffic is
routed through the CDN.

3) To handle image formatting, the client first makes a GET
request, specifying parameters for image type and size
acceptance. After the storage bucket returns the image,
which may be larger and in a different format, the edge
function transforms it into the correct format. Because

3



this transformation occurs before the response is sent,
the modified image can be cached and served to other
users without the need for additional transformations.

4) To track users and improve analytics by matching re-
quests to specific users, a user cookie can be set before
the response is sent. It is important that this cookie is
not associated with the cache, as caches should be shared
between users.

With modern web frameworks, it is also easy to run all site
functionality in edge functions only, without using an origin
server at all. [11]

IV. BENEFITS

The recovery-orientated design philosophy outlined below
has a number of useful by-products.

A. Design Principles

The entire CDN design is based on the assumption that
problems such as machine, cluster, connectivity and network
failures will occur at some point in the network. The system
is therefore designed for reliability. The aim is to achieve
close to 100% end-to-end system availability. CDNs ensure
full component redundancy to eliminate single points of failure
and incorporate multiple levels of fault tolerance. With a
large infrastructure, CDNs are able to meet increasing traffic
demand and handle traffic spikes. All platform components
are highly scalable, able to efficiently handle varying levels of
traffic, content and customers. On the other hand, the need for
human management is limited. Because the CDN network
is designed with the assumption that components can fail at
any time, CDNs are designed as autonomic systems and keep
human operating costs low. CDNs have the ability to recover
from failures, manage load and capacity shifts, self-tune for
optimal performance, and securely deploy software and con-
figuration updates. Humans do not have to worry about most
outages or rush to fix them. Moreover, staff can proactively
suspend components if they have the slightest concern, as this
will not affect the performance of the overall system. Another
benefit is the ability to roll out software updates seamlessly.
Because the failure of a number of machines or clusters
does not affect the overall system, zoned software rollouts
can be performed quickly and frequently without disrupting
production services. This enables application developers to
iterate and deliver their products faster and more frequently.
Finally, because CDNs are designed for performance, they
optimise end-user performance, improve cache hit rates, effec-
tively manage network resource utilisation and promote energy
efficiency throughout the system.

B. Additional Benefits

In addition to these improvements, a CDN brings other
significant benefits, such as

• Security: A CDN leverages its significant network ca-
pacity at the edge, playing a key role in providing
robust Distributed Denial of Service (DDoS) protection,
particularly against large-scale attacks, as shown in Fig. 4.

The key strategy is to maintain a network capacity that
is significantly greater than that of potential attackers.
This not only effectively thwarts DDoS attacks, but also
prevents downtime and cost explosions. This approach is
particularly effective when the CDN is built on an anycast
network, allowing attack traffic to be distributed across a
large number of servers. [12]

Fig. 4. Web requests are distributed across the different CDN servers. In
contrast to a centralised origin server, DDOS attacks do not block the system
for other visitors because the load is balanced across many servers.

• Improved Availability and Reliability: The inherent
design of a CDN is one of high distribution. By having
copies of content across many PoPs, a CDN is resilient to
multiple hardware failures compared to centralised origin
servers, as shown in Fig. 5. The large server distribution
acts as a failover mechanism and has a proven ability
to maintain uninterrupted services in the face of unpre-
dictable downtime due to machine, cluster or connectivity
failures. High availability techniques within edge clusters
respond seamlessly to machine failures by starting other
machines and timely updating the map used for opti-
mised routing to redirect new requests to accommodate
these failures. In the event of whole cluster failures or
connectivity issues, the CDN dynamically adjusts cluster

4



allocations and quickly updates the system to redirect
requests to clusters with better performance. The robust-
ness of the CDN platform also extends to connectivity
issues, where degraded connections are quickly detected
and mitigated through path optimisation technology that
finds good alternative paths through intermediate nodes
in the CDN network. [12] [11]

Fig. 5. By having cached copies of content available in many locations, a
CDN can withstand many more hardware failures than the origin server alone
by potentially serving outdated cached content. There are no more single
points of failure.

• Lower costs can be a significant financial consideration.
CDN egress costs, which refer to the costs associated with
data leaving the data centre and reaching the end user,
are significantly lower than direct data centre egress. The
CDN infrastructure optimises data delivery, reducing the
total amount of outgoing data and therefore the financial
burden associated with getting data from the data centre
to the end user. In addition, using the image transfor-
mation edge function mentioned above, or an equivalent
built-in functionality, images can be transformed into the
optimal format for the end user’s browser. This reduces
the amount of data that needs to be transferred, further
reducing costs.

• Handshakes for encrypted connections take multiple net-
work rounds to establish and are therefore inherently
resource intensive. By terminating the encrypted con-
nection at the edge server, as visualised in Fig. 6, the
latency for users to establish an encrypted connection
is significantly reduced. This optimisation is one of
the reasons why many modern applications even send
dynamic, uncacheable HTTP content via a CDN. [12]

Fig. 6. By terminating the secure connection at the edge, the latency for the
user to establish an encrypted connection to the edge server is significantly
reduced. The connection to the origin server is kept alive.

The highly distributed nature of the CDN network is
key to its effectiveness. This distribution ensures that the
endpoints of the optimised long-haul tunnel are located in
close proximity to both the origin server and the end user.
As a result, most of the communication from the origin to
the end user is optimised, with the short hops at either end
having extremely low latency due to their short distance.
In practice, this optimisation results in good performance
over long distances.

• Flexibility by providing the ability to integrate with
multiple origins. Users can configure routing rules di-
rectly within the CDN. This allows customers to define
specific rules for content delivery, intelligently routing
static file requests to specific storage bucket servers or
other appropriate origins. [11]

• Robust logging and analytics capabilities are critical to
gaining comprehensive insight into system performance.
CDNs often facilitate the collection and aggregation of
rich data at the edge, providing valuable capabilities for
observing traffic patterns, extracting insights and effec-
tively categorising information as mentioned above.

• Modern CDNs often have the ability to go beyond tra-
ditional content delivery and actively transform static
content into more optimised formats. This includes min-
imising the file size of script bundles, transforming image
files into modern formats such as webp, and compressing
content. [13] [12]

V. CONCLUSION

Using a CDN platform provides the desired predictable end-
to-end system quality and performance. CDNs were created
to reduce the bandwidth required to deliver static web content
quickly and reliably, overcoming the inherent limitations of the
Internet architecture. They act as a layer on top of the existing
Internet infrastructure, operating seamlessly as a virtual net-
work without requiring any software or hardware changes for
their customers. End users only communicate with the edge
servers, which are then responsible for retrieving content from
the origin server if it is not in its cache, significantly reducing
the load and bandwidth requirements on the origin server
cluster, increasing performance and reducing costs. Even in
the unlikely scenario of simultaneous failures, the CDN is
highly resilient, recovering quickly and ensuring a consistent
and reliable content delivery experience for end users. Overall,
the multi-level failover capabilities of a CDN give customers
the reliability, availability, security and flexibility they want
for their web applications. Today, entire applications can be
made highly performant by moving application logic closer to
the user.

REFERENCES

[1] E. Nygren, R. K. Sitaraman, and J. Sun, “The akamai network: A
platform for high-performance internet applications,” SIGOPS Oper.
Syst. Rev., vol. 44, no. 3, p. 2–19, aug 2010. [Online]. Available:
https://doi.org/10.1145/1842733.1842736

[2] W. Eddy, “Rfc 9293: Transmission control protocol (tcp),” USA, 2022.
[3] J. Hawkinson and T. Bates, “Rfc1930: Guidelines for creation, selection,

and registration of an autonomous system (as),” USA, 1996.

5

https://doi.org/10.1145/1842733.1842736


[4] V. Stocker, G. Smaragdakis, W. Lehr, and S. Bauer, “The growing
complexity of content delivery networks: Challenges and implications
for the internet ecosystem,” Telecommunications Policy, vol. 41, no. 10,
p. 1003–1016, Mar 2017.

[5] “Point of presence (pop),” Nov 2023. [Online]. Available: https:
//networkencyclopedia.com/point-of-presence-pop/

[6] J. Dilley, B. Maggs, J. Parikh, H. Prokop, R. Sitaraman, and B. Weihl,
“Globally distributed content delivery,” IEEE Internet Computing, vol. 6,
no. 5, p. 50–58, Nov 2002.

[7] T. Greene, “What is the internet backbone and how it works,”
Mar 2020. [Online]. Available: https://www.networkworld.com/article/
968484/what-is-the-internet-backbone-and-how-it-works.html

[8] A. Barbir, B. Cain, R. Nair, and O. Spatscheck, “Rfc3568: Known
content network (cn) request-routing mechanisms,” USA, 2003.

[9] M. Hofmann and L. R. Beaumont, Content networking: Architecture,
Protocols, and Practice. Morgan Kaufmann, 2005.

[10] Y. Fountis, “How does the browser cache work?” Oct 2023. [Online].
Available: https://pressidium.com/blog/browser-cache-work/

[11] J. Ginnivan. (2023, Jun) Cdns 101: An introduc-
tion to content delivery networks - jake ginnivan -
ndc oslo 2023. Youtube. Accessed on 03.01.2024. [On-
line]. Available: https://www.youtube.com/watch?v=djyt mG3S60&
list=PLTD0iXuciM81seuMEtaoRlRgLxo-NpTD2&index=8&t=1597s

[12] ByteByteGo. (2022, Nov) What is a cdn? how
does it work? Youtube. Accessed on 03.01.2024. [On-
line]. Available: https://www.youtube.com/watch?v=RI9np1LWzqw&
list=PLTD0iXuciM81seuMEtaoRlRgLxo-NpTD2&index=1

[13] J. A. Sæterås, “Let the content delivery network opti-
mize your images,” Apr 2017, accessed on 11.01.2024.
[Online]. Available: https://www.smashingmagazine.com/2017/04/
content-delivery-network-optimize-images/

6

https://networkencyclopedia.com/point-of-presence-pop/
https://networkencyclopedia.com/point-of-presence-pop/
https://www.networkworld.com/article/968484/what-is-the-internet-backbone-and-how-it-works.html
https://www.networkworld.com/article/968484/what-is-the-internet-backbone-and-how-it-works.html
https://pressidium.com/blog/browser-cache-work/
https://www.youtube.com/watch?v=djyt_mG3S60&list=PLTD0iXuciM81seuMEtaoRlRgLxo-NpTD2&index=8&t=1597s
https://www.youtube.com/watch?v=djyt_mG3S60&list=PLTD0iXuciM81seuMEtaoRlRgLxo-NpTD2&index=8&t=1597s
https://www.youtube.com/watch?v=RI9np1LWzqw&list=PLTD0iXuciM81seuMEtaoRlRgLxo-NpTD2&index=1
https://www.youtube.com/watch?v=RI9np1LWzqw&list=PLTD0iXuciM81seuMEtaoRlRgLxo-NpTD2&index=1
https://www.smashingmagazine.com/2017/04/content-delivery-network-optimize-images/
https://www.smashingmagazine.com/2017/04/content-delivery-network-optimize-images/

	Introduction
	Overview
	Virtual Networks
	System Components of a Delivery Network
	Difference from other caching problems
	Cache Distribution

	High Performance Application Delivery Networks
	High Performance Overlay Network
	Edge computing

	Benefits
	Design Principles
	Additional Benefits

	Conclusion
	References

